AFRICAN BUFFALO OPTIMIZATION

Julius Beneoluchi Odili, Mohd Nizam Mohmad Kahar

Abstract


This is an introductory paper to the newly-designed African Buffalo Optimization (ABO) algorithm for solving combinatorial and other optimization problems. The algorithm is inspired by the behavior of African buffalos, a species of wild cows known for their extensive migrant lifestyle. This paper presents an overview of major metaheuristic algorithms with the aim of providing a basis for the development of the African Buffalo Optimization algorithm which is a nature-inspired, population-based metaheuristic algorithm. Experimental results obtained from applying the novel ABO to solve a number of benchmark global optimization test functions as well as some symmetric and asymmetric Traveling Salesman’s Problems when compared to the results obtained from using other popular optimization methods show that the African Buffalo Optimization is a worthy addition to the growing number of swarm intelligence optimization techniques.  

 

Keywords: Graphite; African Buffalo Optimization; Metaheuristics; population-based; global optimization; Traveling Salesman’s Problem.


Full Text:

[PDF]

References


Ali, M. M., Khompatraporn, C., & Zabinsky, Z. B. (2005). A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. Journal of global optimization, 31(4), 635-672.

Arora, J. (2004). Introduction to optimum design: Academic Press.

Baritompa, B., & Hendrix, E. M. (2005). On the investigation of stochastic global optimization algorithms. Journal of global optimization, 31(4), 567-578.

Ben-Israel, A. (1966). A Newton-Raphson method for the solution of systems of equations. Journal of Mathematical analysis and applications, 15(2), 243-252.

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., & Bertsekas, D. P. (1995). Dynamic programming and optimal control (Vol. 1): Athena Scientific Belmont, MA.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268-308.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems: Oxford university press.

Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 6(1), 58-73.

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 317-365.

Eigen, M. (1973). Ingo Rechenberg Evolutionsstrategie Optimierung technischer Systeme nach Prinzipien der biologishen Evolution: mit einem Nachwort von Manfred Eigen, Friedrich Frommann Verlag, Struttgart-Bad Cannstatt.

Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune system, adaptation, and machine learning. Physica D: Nonlinear Phenomena, 22(1), 187-204.

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with computers, 29(1), 17-35.

Ghanem, R. G., & Spanos, P. D. (2003). Stochastic finite elements: a spectral approach: Courier Corporation.

Haftka, R. T., & Gürdal, Z. (2012). Elements of structural optimization (Vol. 11): Springer Science & Business Media.

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1), 106-130.

Hurwitz, C., & Craig, R. GNU tsp solve version 1.4. Computer software, http://www. or. deis. unibo. it/research_pages/tspsoft. html.

Karaboga, D., & Akay, B. (2009). A survey: algorithms simulating bee swarm intelligence. Artificial Intelligence Review, 31(1-4), 61-85.

Karp, R. M., & Steele, J. M. (1985). Probabilistic analysis of heuristics. The traveling salesman problem, 181-205.

Kennedy, J. (2010). Particle swarm optimization Encyclopedia of Machine Learning (pp. 760-766): Springer.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.

Kumbharana, N., & Pandey, G. M. (2013). A Comparative Study of ACO, GA and SA for Solving Travelling Salesman Problem. International Journal of Societal Applications of Computer Science, 2(2), 224-228.

Luenberger, D. G. (1973). Introduction to linear and nonlinear programming (Vol. 28): Addison-Wesley Reading, MA.

Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied mathematics and computation, 188(2), 1567-1579.

Marinakis, Y., Marinaki, M., & Dounias, G. (2011). Honey bees mating optimization algorithm for the Euclidean traveling salesman problem. Information Sciences, 181(20), 4684-4698.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46-61.

Olafsson, S. (2006). Metaheuristics. Handbooks in operations research and management science, 13, 633-654.

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2011). The Bees Algorithm–A Novel Tool for Complex Optimisation. Paper presented at the Intelligent Production Machines and Systems-2nd I* PROMS Virtual International Conference 3-14 July 2006.

Prins, H. (1996). Ecology and behaviour of the African buffalo: social inequality and decision making (Vol. 1): Springer Science & Business Media.

Rani, D., Jain, S. K., Srivastava, D. K., & Perumal, M. (2012). 3 Genetic Algorithms and Their Applications to Water Resources Systems. Metaheuristics in Water, Geotechnical and Transport Engineering, 43.

Reinelt, G. (1991). TSPLIB—A traveling salesman problem library. ORSA journal on computing, 3(4), 376-384.

Rocha, A. M. A., Fernandes, E. M., & Soares, J. L. C. (2004). Solution of asymmetric traveling salesman problems combining the volume and simplex algorithms.

Said, Y., & Wegman, E. (2009). Roadmap for optimization. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1), 3-17.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. Paper presented at the Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985.

Stueckle, S., & Zinner, D. (2008). To follow or not to follow: decision making and leadership during the morning departure in chacma baboons. Animal Behaviour, 75(6), 1995-2004.

Suchal, J., & Návrat, P. (2010). Full text search engine as scalable k-nearest neighbor recommendation system Artificial Intelligence in Theory and Practice III (pp. 165-173): Springer.

Van der Cruyssen, P., & Rijckaert, M. (1978). Heuristic for the asymmetric travelling salesman problem. Journal of the Operational Research Society, 697-701.

Vanderplaats, G. N. (2007). Multidiscipline design optimization: Vanderplaats Research & Development, Incorporated.

Venter, G. (2010). Review of optimization techniques. Encyclopedia of aerospace engineering.

Wilson, D. S. (1997). Altruism and organism: Disentangling the themes of multilevel selection theory. The American Naturalist, 150(S1), s122-S134.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. Evolutionary Computation, IEEE Transactions on, 1(1), 67-82.

Yang, X.-S. (2011). Review of meta-heuristics and generalised evolutionary walk algorithm. International Journal of Bio-Inspired Computation, 3(2), 77-84.

Zang, H., Zhang, S., & Hapeshi, K. (2010). A review of nature-inspired algorithms. Journal of Bionic Engineering, 7, S232-S237.

Zheng, R. T., Ngo, N., Shum, P., Tjin, S., & Binh, L. (2005). A staged continuous tabu search algorithm for the global optimization and its applications to the design of fiber bragg gratings. Computational Optimization and Applications, 30(3), 319-335.


Refbacks

  • There are currently no refbacks.